On the Connected Components of Moduli Spaces of Finite Flat Models

نویسنده

  • NAOKI IMAI
چکیده

We prove that the non-ordinary component is connected in the moduli spaces of finite flat models of two-dimensional local Galois representations over finite fields. This was conjectured by Kisin. As an application to global Galois representations, we prove a theorem on the modularity comparing a deformation ring and a Hecke ring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramification and Moduli Spaces of Finite Flat Models

We determine the type of the zeta functions and the range of the dimensions of the moduli spaces of finite flat models of two-dimensional local Galois representations over finite fields. This gives a generalization of Raynaud’s theorem on the uniqueness of finite flat models in low ramifications.

متن کامل

G-VALUED CRYSTALLINE REPRESENTATIONS WITH MINUSCULE p-ADIC HODGE TYPE

We study G-valued semi-stable Galois deformation rings where G is a reductive group. We develop a theory of Kisin modules with G-structure and use this to identify the connected components of crystalline deformation rings of minuscule p-adic Hodge type with the connected components of moduli of “finite flat models with G-structure.” The main ingredients are a construction in integral p-adic Hod...

متن کامل

Beauville Surfaces, Moduli Spaces and Finite Groups

In this paper we give the asymptotic growth of the number of connected components of the moduli space of surfaces of general type corresponding to certain families of Beauville surfaces with group either PSL(2, p), or an alternating group, or a symmetric group or an abelian group. We moreover extend these results to regular surfaces isogenous to a higher product of curves.

متن کامل

Connected Components of Spaces of Surface Group Representations Ii Nan-kuo Ho and Chiu-chu

In [HL1], we discussed the connected components of the space of surface group representations for any compact connected semisimple Lie group and any closed compact (orientable or nonorientable) surface. In this sequel, we generalize the results in [HL1] in two directions: we consider general compact connected Lie groups, and we consider all compact surfaces, including the ones with boundaries. ...

متن کامل

On the Connectedness of Moduli Spaces of Flat Connections over Compact Surfaces Nan-kuo Ho and Chiu-chu

We know that there is an isomorphism between the moduli space of gauge equivalence classes of flat G-connections on a compact surface and the moduli space of representations from the fundamental group of the surface to G acted on by the adjoint action (cf: Goldman[G]). It is known that if G is compact, semi-simple and simply connected, the moduli space of gauge equivalence classes of flat G-con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008